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EQUATIONS FOR MOMENTS AND STABILITY CONDITIONS OF 
LINEAR SYSTEMS WITH SCALAR PARAMETRIC PERTURBATION BY MARKOV CHAIN* 

E. N. EEREZINA and M. V. LEVIT 

Linear systems of differential equations with constant coefficients are considered. 
The structure of first and second moment equations is investigated under conditions 

of coefficient perturbation by a Markovian process with a finite number of states. 

A method is proposed for analyzing the stability of first and second moments by 

constructing transfer functions. The method is illustrated on the example of a 

second order equation perturbed by a symmetric telegraph signal. 

1. Introduction. Foundations of the analysis of stability of differential equations 

with Markovian perturbation were established in /l/. A system of n linear differential equa- 

tions 
x' = A (E)x (1.1) 

acted upon by a uniform Markov chain 5; with continuous time, a finite set of states {h,,..., 

hx) r and an infinitesimal matrix Q = {qijl was considered in /2/. It was shown in /2,3/ 

that the analysis of the mean square stability of the system of stochastic differential equa- 

tions (1.1) can be reduced to the analysis of stability of the determinate system of linear 

differential equations with constant coefficients 

M,’ (t) = A (11,) 11,. (t) + Ms. (t) AT (b) + i QjJfj (t)t r=l,...N 
i=1 

(1.2) 

where &I,(t) are symmetric matrices of order n. It was established in /2/ that the mean 

quadratic stability of system (1.1) is equivalent to the asymptotic stability of the trivial 

solution of the matrix system (1.2). 
It is important to note that .Y 

:xxr: =rgl .\I, (1.3) 

which indicates the practical possibility of constructing a determinate system whose output 

would be represented by the matrix of second moments of the input stochastic system. Reasoning 

similar to that in /2,3/ mak es it possible to obtain a determinate system of linear differen- 

tial equations with constant coefficients for the determination of first moments 

my’ (t) = A (b) m, (4 + j$l qjrmj (t), r=l,...,N (1.4) 

with vectors m,(t) such that 

(x>= g m, 
r=1 

(1.5) 

Stability of system (1.4) is the necessary condition for the mean quadratic stability of 

the original system (1.1). 
The structure of systems (1.2) and (1.4) is investigated below in the most important in 

practice particular case of linear dependence of matrix A(E) on the perturbation 5 

A (5) =A+ ShT (1.6) 

where A is a constant matrix of order n X n, and band c are constant vectors of order R. 
Constraint (1.6) enables us to derive simple stability conditions for system (1.4) in terms 

of the transfer function x.(p) = cT(pI -A)-’ b of the linear block 

y’=Ay+bv, u=cTy (1.7) 

from the input v to the output u in terms of the specified characteristics of the perturbation 

L. The proposed here method of stability investigation of system (1.4) of first moments 

can be successfully applied to the analysis of system (1.2) of second moments, and for obtain- 

ing the final stability conditions using the transfer matrix function X(p)of the linearblack 
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Y’ = AY + YAT + bVT + VbT, U = yc (1.8) 

from the input vector V to the output vector U. A byproduct of this investigation is the 

establishment of the existence of linear nondegenerate transformations of the phase coordin- 

ate systems (1.4) and (1.2) that split these systems in N uniform blocks of the form (1.7) 

and (1.8). The use of these transforms simplifies the structure of systems (1.4) and (1.2), 

with the first moment vector (xl and second moment matrix <XX'> appearing directly in the 
set of their new phase variables. In the most important case in which matrix Q has a simple 

structure, systems (1.4) and (1.2) may be presented, respectively, as 

Ui=X(p-kj)Vi, vi= 5 cpijUj, i=l,...,N (1.10) 
i=r 

where h,, . . . . hN are the eigenvalues of matrix Q, and matrix Q, = (cpil) is constructed in 

conformity with the specified Markov chain characteristics &. The stability of the linear 

determinate systems (1.9) and (1.10) define the mean and the quadratic mean stability of the 

investigated stochastic system. 

The basic difference between the proposed here method of investigation of the stochastic 

systems (1.1) and (1.6) and the methods used in /2/, thus, consists in the analysis of the 

block structure of equations of moments. In the authors' opinion the analysis using transfer 

block functions also facilitates the second step of investigation, viz. the determination 

of spectral characteristics of the stationary random process in its transition through a 

linear block which is parametrically perturbed by a Markov chain. The latter problem requires 

separate investigation and is not considered here. 

2. Investigation of the structure of equations for moments. First, let us 

strictly define vectors m, (t) and matrices -'l{,(t) 

1, s=o 
mr(t)=(xt~(~,--Et)~~ 6(s)= o spa L (2.1) 

M,(t) = <xtxtT6 (h, - Et)), r = 1, . ., N (2.2) 

where x1 is the solution of the stochastic system (1.1). The equalities (1.3) and (1.5) im- 

mediately follow from the definitions (2.1) and (2.2). 

Theorem 1. Let vector x0 and numbers P1 (O), . . . . Ph. (0) be the initial conditions of 

the stochastic system (1.1) : x0 = x(O), P,(O) = P (E. =h,). Then the set of vectors (2.1) 
m,(t), . . ..mN(t) is the solution of the system of Eqs. (1.4) with initial conditions mr(0)= 
xopr (o), r = 1. . . .+ N and the set of matrices M,(t), . . . . MN(t) is the solution of the system 

of Eqs. (1.2) with initial conditions M,(O) = x,xoTP, (O), r = 1, ., N. In conformity with 

assumption (1.6) the original system assumes the form' 

x' = Ax t &bcTx (2.3) 

Let us investigate the structure of equations for 

By virtue of (1.6) systems (1.4) and (1.2) become 

m,’ (t) = Am, (t) + h,bcTm, (t) $ 

the moments of solution of system (2.3). 

SJ Pj,mj (t) (2.4) 
,=1 

Mr’ (t)= LaMr (t) + Wdlr (t) + I5 qjrMj (t) , L,Z = AZ -+ ZAT, Lb,Z = bcTZ -1 ZcbT (2.5) 

where L, and Lb are linear operators acting in the space of symmetric matrices Z of order 
n. 

Theorem 2. Let the infinitesimal matrix Q be reducible to the diagonal form. We 

denote by dl, . . ., dN the eigenvectors of matrix Q that correspond to eigenvalues h,, .,LY 
and compose matrix D = (d,, . . ., d,v) = {di,)IN. Then, as the result of the linear transformation 

N 

yi= xmrd,i, i=l,...,N 
(2.6) 

r=, 

system (2.4) for first moments splits in N linear blocks 

yi' = (A + hi&,) yi -i- bvi, ui = cTyi, i = 1, . ., N 

linked by relations 

(2.7) 
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N 

Vi = 2 CpijUj (2.8) 
2=1 

and system (2.5) for second moments, after the similar transformation 

Yt= 5 writ i=i,...,N 
r-1 (2.9) 

splits into the following blocks: 

, 
Yj‘ = (L, + h,I,) It i + LbVi, Ut T = crYi, i = 1, . ..+ N, L,z = bzT + zb’J’ (2.10) 

with the connection relations 

where 
@ = {mij) = DrH (D*)-', 

i=l ,-.*I N 

H = diag Ihi, . . ., hl 

(2.111 

(2.12) 

and Lb is a linear operator which maps the space of vectors of order n into the space of 
symmetric matrices of order n. 

The layout of connections between blocks of system (2.7), (2.8) is shown in Fig.1 for 
the case of perturbation by a Markov chain with three states. The following notation is used 

Xi= i CpijUj, Xi=X(P-ki) 

,=I 

The layout of system (2.10), (2.11) is the same. 
The layouts of system (2.71, (2.8) and (2.10), (2.11) enable us to make the following 

observations. 
lo. Each of blocks (2.7) has a scalar input vi and output ~8, and is defined by a 

system of differential equations of order n. 
2O. Each of blocks (2.10) has a vector input Vi and output UC of order n, and is 

defined by a system of differential equations of order n(n -i- I)/ 2. 
3O. The first blocks of systems (2.7), (2.8) and (2.10), (2.11) have as their phase 

coordinates, vector y1 = (x: of first moments and matrix f', =(xxT) of second moments, re- 
spectively, of initial stochastic system (2.3) (assuming that 

4O. 
h, = 0, dlT = (a, . . ., 1)). 

The linear transforms of phase variables (2.6) and (2.9) are nondegenerate, hence 
the stability of systems (2.4) and (2.5) is equivalent to the stability of systems (2.7), 

zi.1 (2.8) and (2;10), <2.11) respect 
4 

rely. 
These observations indicate the possiblity of investi- 

gating the stability of the initial system (2.3) with 
respect to first and second moments by analyzing transfer 
functions and matrix functions of the linear blocks (2.7) 

and (2.10). 
Similar block representations of systems (2.41 and 

(2.5) can be also obtained when matrix Q cannot be reduc- 

ed to a diagonal form. For this it is necessary to take 
as the linear transformation matrix D as the matrix which 

reduces matrix Q to Jordan's form. 

Fig.1 

3. Stability with respect to first and second moments. Let us define more 
precisely the considered here notion of stability. 

Definition 3.1. We shall call system (1.1) (or 2.3) stable with respect to the first 
(second) moment, when the trivial solution of the linear system (1.4) (linear system (1.2)) 
is as a whole asymptotically stable. 

Since systems (1.4) and (1.2) are linear and have constant coefficients, stability with 
respect to the first (second) moment means that (sI) -1.0 as t .a x(,x~x~~) -,o as t_,rn7 and the 
order of approach to zero is exponential. According to /2/ stability with resepct to second 
moment is equivalent to asymptotic stability in the quadratic mean. It should be noted that 
the defined above stability with respect to the first moment is necessary for the asymptotic 
stability in the mean and all the more so for that in the mean square (see stability 
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definitions in /4,5/). 

Theorem 3. Let the infinitesimal matrix Q be of simple structure, h,,...,h~ be the 
eigenvalues of Q, matrix D=(dl,..., dN) be composed of respective eigenvectors of Q, matric- 
es H and @ be defined by formulas (2.12), and x(p) and X(p) be the transfer functions of 
linear blocks (1.7) and (1.8), respectively, A,(p) = det (pl -A) and Ad(p) be the character- 
istic polynomials of the matrix differential equation in (1.8) of order n (n I)/2 For 
stability of the stochastic system (2.3) with respect to the first moment it is, then, neces- 

sary and sufficient that the polynomial 

A1 (p - 1,) . . A1 (p - h!\) det [Iy - diag [x (p - h,), , h (p - h.\y)l @I (3.1) 

be a Hurwitz polynomial, i.e. that all of its zeros lie to the left of the imaginary axis in 

the complex plane. For stability of the stochastic system (2.3) with respect to the second 

moment it is necessary and sufficient thatthepolynomial 

AZ (P - &) . . . AZ (p - AN) det [I,, - diag IX (p - A,). . ., X (p - kN)l Cp @ I,] (3.2) 

be a Hurwitz polynomial. In this formula (D@ I,, denotes the direct product of matrices 0 

and I, (see /6/). 
The conditions of Theorems 2 and 3 disregard the case when matrix Qcannot be reduced to 

a diagonal form. However the application of the linear transform which reduces Q to Jordan's 

form yields results similar to those obtained above. 

4. Determination of the matrix transfer function. The stipulated in Theorem 

3 conditions of stability with respect to the second moment presumed that the transfer matrix 

function X(p) of the linear block (1.8) is known between the input V and output U. This 
function is a square matrix of order n whose elements are proper rational fraction whose 

denominator is of power n(n + 1)/2. We shall indicate two methods for its derivation. 

The first method uses the vector representation of block (1.8). Such representation can 

always be obtained by forming the vector of independent phase coordinates z from n(n + I)/2 

elements of matrix 1‘ lying on the principal diagonal and above it, i.e. 

z' = A,z + BV, U = CTz (4.1) 

For instance, when n = 2 we have in this representation 

+ (, 8,=l( :;; u,,;::L & II=11 f”’ i, //, C=I; ;; // 

where a<j, bi, and Cj are, respectively, elements of matrix -4 and of vectors b and c. 

Using the representation (4.1) we obtain X (p) = CT (pI,,(n+l),z - A,)-'B. Unfortunately, as 

the order n is increased, the dimensions cf matrices A,,B, and C rapidly increase, and the 

formulas defining them increase in coniplexity. Hence, means for determining the transfer 

matrix X(p) without resorting to the vector representation (4.1) is of interest. 
The second method consists of solving the Liapunov matrix equation, as proposed in /7/. 

The transfer matrix defines the dependence between Laplace representation of the input and out- 

put of block (1.8) as follows: U = X(p)V. The same dependence is defined by the relations 

PY = Al' + YA= i_ bV= +m Vb=, U = Yc 

Hence columns Xi(p) and matrix [Xl(p), . . . . X,, (p)l = X (p) can be determined by solving 

the matrix algebraic equations 

(4.2) 

where et is a vector of order 't whose coordinate number i is unity and the remaining ones are 

zero. According to /7/ the following operations must be carried out for calculating columns 

Xl (P) . 
1. Determine the coefficients /j(p) and Fj(p) of the scalar and matrix polynomials 

f @, P) and F&p) 

f(h, P)= h* + fl(p)hn-l + . . . +f.(P)=det((h+ $-.)1--A) 

F(h, p)=Fl(p)h”-‘+ . . . +F,(p)=f(h,~)((h+~)I-Ah)-’ 

Coefficients of the matrix polynomial F&p) can be calculated using the recurrent form- 

ulas 

FI(P)=~ Fz (p) = (A - + I) FI (p) + fl (p) 1, . . . , F, (p) = (A - + I) Fn-~b) + fn-11 
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2. Determine the first row [a,@), . . . . a,,(p)] of matrix [H, (f)l-‘, where H,(f) is the 
Hurwitz matrix of the polynomial f(h,pl 

L(P) 1 0 . . . 0 y 

f*(P) f*(P) f,(P) ... 0 

K(f)=:: :: :: ::: :: 

0 0 0 . . . f,-,(P) 

0 0 0 . . L(P) 

3. Determine the n-dimensional columns 

g1 (P) 'F1(p) 0 . 0 . . . 0 (h,r + a$*) Fir !P)C 

& (P) F,(P) F,(p) F,(P) . . 0 - (beiT + e,br) FzT (p) e 

= . . x . . . . . 

T%(P) ‘0 

. . 

. ‘0 0 

. . . . . 

F,(P) (- I)*-‘(beiT f e,br) F,r (p) ( 

4. Calculate the column 

xi (P) = f 2 aj (P) Rj (P) 
i=l 

5. Example. Let us consider the differential equation 

5.. + (a1 + a&' + (a., + fiS)z = 0 (5.1) 

perturbed by a symmetric telegraph signal, which is assumed to be a Markov chain Sf with two 

states h and-h and the infinitesimal matrix 

Q-II-:. -:I1 
where the numbers h and h are positive. In this case the structure of matrix Q is simple 

and its eigenvalues are X,=0,& = -2h, to which correspond eigenvectors 

(i,-1)r. In conformity with definition (2.12) we obtain the matrix 

d, = (1, i)r and d, = 

To determine stability with respect to the first moment we determine the transfer function 

of system (5.1) from the input u =akx'+ b&c to the output u =UZ + BZ 

Y(P) ap+B -=_ 
x (P) = a, @) ti + a,P + (11 

The polynomial (3.1) assumes the form 

% (PW, (P Jr 3 - h2y (P)V (P + W (5.2) 

Equation (5.1) is stable with respect to the first moment, when (5.2) is a Hurwitz poly- 

nomial. 
It is interesting to note that the asymptotic stability of the trivial solution of the 

unperturbed equation z"+u,x'+ ap.z :: 0 is not a necessary condition of stability of (5.1) with 

respect to the first moment. Thus, for example, the equation 

.F" + (1 -1. E)z' - 2;& = 0 (5.3) 

is stable with respect to the first moment for anyh>Oandh =I, which means aat (zt> -9 u and 
(Jo') + 0 as t_, m. Nevertheless the trivial solution of the unperturbed equation .T" t-z'=0 

is not asymptotically stable. Moreover the realization of solution of the perturbed equation 
(5.3) depends in some time intervals on the unstable equation X" + 2s' - hz = 0, and in others 

on the asymptotically unstable equation 5'. + hs ~ u. 

To investigate Eq. (5.1) with respect to the second moment we determine the transfer 

matrix X(p) of the linear block (1.8) in which 

In accordance with Sect.4 we have 
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x (P) x (P) = m) ( II (P-t w cap-i- 2P) 
%(P) == p(- zaa, + p(p + 2n,)) 

zap -F_ ;p II 
2n(/9+ ",&I t 20,) + 2gp /I 

A* (p) = (p + 81) (P? + %p -L- 4%) 

and polynomial (3.2) assumes the form 

8, (P)& (P + 2h) - h* sp Ix(p f 21)x (p)l + ha46 (up .’ ‘fi) (cqp 1m “i,) + ‘fi) (5.4) 

Equation (5.1) is stable with respect to the second moment, when (5.4) is a Hurwitz 
polynomial. 

For Eq. (5.3) polynomial (5.4) cannot be a Hurwitz polynomial, since its free term is 

(-16h.3(h+l)) and, consequently, negative for all h>~). Thus Eq. (5.3) cannot be stable with 
respect to the second moment. 

6. Proof of Theorems l-3. For Theorem 1 we shall 

since the second was proved in /2,3/. We write system (1.1) 
t 

prove only the first statement, 

in the integral form 

multiply both of its parts by function 6(h,- St) (see (2.1)), and apply the operation of 
mathematical expectation 

I 

ml(t) = GP, 0) + ( < A (4,) xl6 (h, - 4,) > dr 
i 

To obtain a system of integral equations for functions m,(t) we transform the integrand 
of this equation. 

We apply the operation of conditional mathematical expectation (c.) =+ IF_*) for r.<~t 

N 

(A (E,) x,6 (h, - Ef)) = x <A (5,) x$ (hj .- E,) 6 (h, -- &), = 
i=1 

jil (A (ET) x,‘(hj - ET) (6 (“, - Et) I ET)) = 

5 (A bj) x,6 (hj - 4,) (6 (hr - tf) I& = hj>> = 
j=l 

N 

B A (hj) “,’ (hj - 4,)) (6 (hi - Ef) I F.r = h,, _ 
j=1 

N 

3 * (1~~) mj CT) njT (t - 7) 
,=1 

where (xi, (t)),yr=,=a(t) is the matrix of transient probabilities of the Markov chain during 

time t. 

It follows from this that the vector functions 'nr @) satisfy the system 

m, (9 = %P, (t) + j i * (hj) mj (7) njr (f - T) do, r=i..... A (6.1) 

0 j=l 

Differentiation of the right- and left-hand sides of (6.1) yields the system of Eqs. 

(1.4). 
To prove Theorems 2 and 3 we use the concept of direct product of matrices. All 

relevant properties of direct product of square matrices can be found in /6,8/. Using the 

notation of (2.12), mT = mT (t) = [m,*(t), ., mA.* (t)], MT = MT (1) = IM, (t), . ., M, (t)] and the symbol 

@ for the direct product , we transform system to the form 

m' = (IN 8 A) m f(B @ bcr) m t (Q* @ I,,) m (6.2) 

M' = (IN @LO) M + (B @ L,,) M + (Q* @ I,,) M 
(6.3) 

Let us prove the first statement of Theorem 2, by obtaining system (2.7), (2.8) equival- 

ent to system (2.4). We carry out the linear substitution y = (D*@l,)m in (2.6) and for the 

system of linear differential equations in new phase variables yT = [ylT, ., yNT] obtain 

Y’ -= (D* C3 I,,) [(IN 3 A) + (H @ be’) + (Q B Ml [P*)-' 3 I,,1 y (6.4) 

Using the properties of the direct product and the notation 

CD ; D’H (D’)-1, .\ : tliag (A,, ., hN) 

we obtain 
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Y’ = UN @ A) Y + P @ b) (IN @ c=) Y + (A 8 Z) Y (6.5) 

By splitting system (6.5) into blocks we pass to the required relations (2.7) and (2.8). 
The second statement of Theorem 2 is similarly proved using vector representation of matrix 
equations. 

To prove Theorem 3 it is sufficient to show that the chracteristic polynomial of linear 
systems (2.10), (2.11) and (2.7), (2.8) are, respectively, of form (3.2) and (3.1). Accord- 
ing to Sect.4 the matrix system (2.10), (2.11) is linear, of order n(n+i)N/2, and its 
block vector representation is of the form 

E*' = (A, + hiI) it + BV,, U, = C=I,, f = 1, . . ., N (6.6) 

with the connection relations (2.12) between blocks. Here A, is a square matrix of order 
n(n + I) 12, and Band Care rectangular matrices of dimensions n(n+l) 12 X a, respectively. 

Systems (2.7), (2.8) and (6.6), (2.11) are of the same type, differing only in the dimensions 
of the input and output phase vectors. We restrict the calculation to the determination of 
the characteristic polynomial of system (2.7), (2.8). Using the notation 

I, 0 A + A @ I,, = A,, Q, @ b = B,, I, @ cT = C,= 

we represent system (6.5) in the form 

Y' = (4 + B,GT) Y (6.7) 

Let us determine the characteristic polynomial. It is shown in /8/ that 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Then 

detlpInN -(4+B,C,T)I = det(pI,, -A,). dett1, -q= (pIti-- A,)-lB,] 

det(&,, - A,)= A& - &)... A,(p -AN), &T(pInN - .*r)-~B, = ding 1% (P - %), l . .) X (P - &)I @ 

Thus det [PI,,~ - (A,+B,CsT)] is equal to polynomial (3.1), Q.E.D. 
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